投稿指南
一、稿件要求: 1、稿件内容应该是与某一计算机类具体产品紧密相关的新闻评论、购买体验、性能详析等文章。要求稿件论点中立,论述详实,能够对读者的购买起到指导作用。文章体裁不限,字数不限。 2、稿件建议采用纯文本格式(*.txt)。如果是文本文件,请注明插图位置。插图应清晰可辨,可保存为*.jpg、*.gif格式。如使用word等编辑的文本,建议不要将图片直接嵌在word文件中,而将插图另存,并注明插图位置。 3、如果用电子邮件投稿,最好压缩后发送。 4、请使用中文的标点符号。例如句号为。而不是.。 5、来稿请注明作者署名(真实姓名、笔名)、详细地址、邮编、联系电话、E-mail地址等,以便联系。 6、我们保留对稿件的增删权。 7、我们对有一稿多投、剽窃或抄袭行为者,将保留追究由此引起的法律、经济责任的权利。 二、投稿方式: 1、 请使用电子邮件方式投递稿件。 2、 编译的稿件,请注明出处并附带原文。 3、 请按稿件内容投递到相关编辑信箱 三、稿件著作权: 1、 投稿人保证其向我方所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我方所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我方所投之作品不得同时向第三方投送,即不允许一稿多投。若投稿人有违反该款约定的行为,则我方有权不向投稿人支付报酬。但我方在收到投稿人所投作品10日内未作出采用通知的除外。 5、 投稿人授予我方享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 投稿人委托我方声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。

如何让学生认识到微积分的重要性①

来源:中学数学 【在线投稿】 栏目:期刊导读 时间:2021-01-14
作者:网站采编
关键词:
摘要:一、背景 微积分学,或者数学分析[1,2],是人类思维的伟大成果之一。它不仅是高等院校数学学院的一门重要基础课,是学习高等代数、微分方程、复变函数、实变函数以及概率论等

一、背景

微积分学,或者数学分析[1,2],是人类思维的伟大成果之一。它不仅是高等院校数学学院的一门重要基础课,是学习高等代数、微分方程、复变函数、实变函数以及概率论等课程的基础,也是理科专业的一门重要的公共数学课,是学习线性代数、概率论和数理统计的基础,被誉为“近代技术文明产生的关键事件之一”。[3,4]它引入了若干极其成功的,对以后许多数学的发展起决定性作用的思想。[5]微积分的产生革新了数学的概念、思想和方法,它的创立是教学发展的里程碑,为研究变量和函数提供了重要的方法和手段。

此外,微积分不仅在天文、力学、物理、化学、生物、经济学、工程学等自然科学方面有广泛应用,在社会科学中也有广泛应用。可以说,微积分是这些学科的基础,同时这些学科的发展也促进了微积分的广泛应用和发展。微积分是高等院校理科专业学生大一的基础课程,为后续课程的学习提供工具。微积分学习的好坏将直接影响其他课程的学习。

微积分是重要的,这是毋庸置疑的。遗憾的是,微积分的方法有时流于机械,不能体现出这门学科乃是一种撼人心灵的结晶。大部分学生只知道它是重要的,并没有深刻地理解其重要性,甚至有的学生在谈到微积分时紧皱眉头,对其产生抵触情绪,缺乏学习微积分的热情。在我看来,这是因为学生对微积分应用的理解还只停留在现学知识上或者理论上,并没有深刻理解微积分的思想,也没有看到微积分在交叉学科和实际中的应用。

我们不仅要学习微积分课本上表面的知识,更要掌握它所体现的思想,例如,极限的思想、函数构造的思想、积分的思想等。这些思想隐含在课本中的定义、定理、命题及解题过程中。这就要求在学习微积分时要透过现象看本质,这样才能深刻理解其中的奥妙。本文将以具体的例子说明微积分在中学数学、高等院校本科数学和公共数学方面的应用,使学生产生学习微积分的动力,并形成将其学好的信心。

二、微积分在数学本专业课程中的应用

大部分高等院校数学专业学生的基础课程有高等代数[6]、常微分方程[7]、概率论与数理统计[8]等。微分方程是一种联系着自变量、未知函数及它的导数(或微分)的关系式,且其中未知函数的导数和微分是不可缺少的。可见,微分方程是微积分的应用和拓展。因此,本文不再举例说明微积分在常微分方程方面的应用。

选修课有实变函数[9]、复变函数[10]、数值分析[11]、近世代数[12],而非数学专业学生要学的数学课程有经济数学[13]、概率论与数理统计[14]、线性代数[15]。这些课程的基础都是微积分。接下来,我们将从几个方面着手研究微积分在这些课程中的应用。为了加深学生的理解,接下来以几个例子加以说明。

(一)微积分在高等代数中的应用

高等代数是高等院校数学专业学生除数学分析外的另一门重要的基础课,也是学生今后工作和研究必须掌握的内容。它和数学分析作为两门重要的课程,相互渗透,相辅相成,缺一不可。其中一门课的发展必将带动另一门课的研究热潮。接下来,我们将给出实例说明微积分在高等代数中的应用。

例1[16].设二次型f(X)=X'AX,其中A=(aij)n×n为实对称矩阵,X=(x1,…,xn)'.证明:

(1)若则

(2)若A 为正定矩阵,则则也是正定矩阵。

(1)证明:已知则

由此知,对于一切X≠0,被积函数都大于0,所以积分值大于0,即对于任何X≠0,都有二次型f(X)=X'AX>0,则f(X)为正定二次型,于是A 为正定矩阵,所以

(2)设

令Y=(x1e-t,x2e-2t,…,xne-nt),则对任意X≠0,有Y≠0,而A 为正定矩阵,故二次型正定,即对于任意Y≠0,总有Y'AY>0。因此对任X≠0,上式的被积函数总大于0,其积分值大于0,所以g(X)=X'BX 为正定二次型,因此B 为正定矩阵。

在上述命题中,巧妙地利用微积分中的幂级数和反常积分,大大减轻了计算量,也便于学生理解,更可以让学生认识到微积分的强大。

(二)微积分在概率论与数理统计中的应用

微积分和概率论是高等院校数学专业的两门基础课,前者在后者的学习中有着不可或缺的作用。概率论中的许多问题都可转化为微积分问题。微积分中的集合、函数及微积分思想及计算方法在概率论中都有重要应用,我们以微积分应用为例说明。

文章来源:《中学数学》 网址: http://www.zxsxzz.cn/qikandaodu/2021/0114/672.html



上一篇:远程网络教学在中学数学教学中的运用
下一篇:中学数学排列组合教学实践研究

中学数学投稿 | 中学数学编辑部| 中学数学版面费 | 中学数学论文发表 | 中学数学最新目录
Copyright © 20019-2020 中学数学 版权所有
投稿电话: 投稿邮箱: